Application Interface to Parallel Dense Matrix Libraries: Just let me solve my problem!

نویسندگان

  • H. Carter Edwards
  • Robert A. van de Geijn
چکیده

We focus on how applications that lead to large dense linear systems naturally build matrices. This allows us explain why traditional interfaces to dense linear algebra libraries for distributed memory architectures, which evolved from sequential linear algebra libraries, inherently do not support applications well. We review the application interface that has been supported by the Parallel Linear Algebra Package (PLAPACK) for almost a decade, which appears to support applications better. The lesson learned is that an application-centric interface can be easily defined, deminishing the obstacles that exist when using large distributed memory architectures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plapack: Parallel Linear Algebra Libraries Design Overview

Over the last twenty years, dense linear algebra libraries have gone through three generations of public domain general purpose packages. In the seventies, the rst generation of packages were EISPACK and LINPACK, which implemented a broad spectrum of algorithms for solving dense linear eigenproblems and dense linear systems. In the late eighties, the second generation package called LAPACK was ...

متن کامل

A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...

متن کامل

The ELPA library: scalable parallel eigenvalue solutions for electronic structure theory and computational science.

Obtaining the eigenvalues and eigenvectors of large matrices is a key problem in electronic structure theory and many other areas of computational science. The computational effort formally scales as O(N(3)) with the size of the investigated problem, N (e.g. the electron count in electronic structure theory), and thus often defines the system size limit that practical calculations cannot overco...

متن کامل

Parallel Algorithms for Large Scale Macroeconometric Models

Macroeconometric models with forward-looking variables give raise to very large systems of equations that requires heavy computations. These models was influenced by the development of new and efficient computational techniques and they are an interesting testing ground for the numerical methods addressed in this research. The most difficult problem in solving such models is to obtain the solut...

متن کامل

Computational Electromagnetics and Parallel Dense Matrix Computations

We present computational results using CORAL, a parallel, three-dimensional, nonlinear magnetostatic code based on a volume integral equation formulation. A key feature of CORAL is the ability to solve, in parallel, the large, dense systems of linear equations that are inherent in the use of integral equation methods. Using the Chameleon and PSLES libraries ensures portability and access to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006